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The motion of a semi-infinite incompressible fluid caused by the sinusoidal 
oscillation of a plane flat plate is termed Stokes’s problem. When the plate starts 
from rest in a still fluid a transient solution must be added to Stokes’s well-known 
steady-state result. This paper presents a closed-form expression for the transient 
solution. Previous answers have contained a non-standard integral which could 
not be evaluated. The answer presented herein contains exponentials and error 
functions of a complex argument. These functions are readily available in newer 
mathematical tables. Graphs of the transient solution are presented for both 
sin (T) and - cos (T) boundary conditions. Velocity distributions in the fluid 
are also plotted and it is found that the transient period is essentially complete 
in one-half cycle for the cosine oscillation and in a full cycle for the sine wave case. 

1. Introduction 
Stokes’s result for an oscillating plate, called Stokes’s second problem by 

Schlichting, is a well-known fundamental solution in viscous fluid mechanics. 
The physical problem consists of a semi-infinite incompressible fluid bounded by 
a flat plate. The plate oscillates in its own plane with a velocity u(0, t )  = uo sin (wt) .  
Stokes’s result is the steady-state solution which applies after the effect of any 
initial velocity profile has died out. The topic of this paper is the ‘transient 
solution’ where the fluid is assumed initially at rest. This solution must be added 
to Stokes’s solution to obtain the complete answer, including the initial condition. 

Stokes’s solution is not only of fundamental theoretical interest but it also 
occurs in many contexts in applied problems. It arises in acoustic streaming 
around an oscillating body. Another example is an established boundary layer 
with an imposed fluctuation in the free-stream velocity. In  this problem 
Stokes’s result appears as a perturbation in the high frequency limit. Since the 
flow is incompressible it is immaterial whether the plate oscillates in a stagnant 
fluid or the plate is fixed and the fluid oscillates. The transient solution is also 
important in certain unsteady boundary layers; those starting from rest or those 
with an external velocity having an arbitrary time dependence (the region of 
validity is restricted to be away from the influence of a leading edge). Because 
the problem is linear, it  is useful to replace the arbitrary velocity history by a 
Fourier series. Each term in the series then yields a Stokes’s problem where both 
the transient and steady-state components are significant. 
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There is an analogy between viscous diffusion problems and unsteady heat 
conduction problems. Hence problems in one field may be directly taken over 
into the other. The solution here for Stokes’s transient can be reinterpreted as 
applying to the sinusoidal heating of a semi-infinite wall which is initially at  a 
uniform temperature. Again the more general problem where the wall is heated 
in an arbitrary manner can be decomposed into a sequence of Stokes’s problems 
using Fourier series. 

To the writer’s knowledge, a closed form solution to the transient problem has 
not been given before. Carslaw & Jaeger (1959, p. 64), the standard source book 
for heat conduction, does not discuss this problem. Sehlichting (1960, p. 76) gives 
the following answer in the form of an integral which he attributes to Muller, 

In  this equation ut is the transient velocity component, t time, y the distance 
perpendicular to the plate, Y the kinematic viscosity; uo and w are the amplitude 
and frequency of the oscillation respectively. Arpaci (1966, pp. 423 and 280) 
recently attempted the solution using Fourier transforms; however, he could 
not perform the inversion and also left the answer as an unevaluated integral. 
The purpose of this paper is to present a solution in terms of standard mathe- 
matical functions. 

2. Mathematical formulation and solution 

The velocity satisfies the diffusion equation and boundary conditions : 
The fluid is taken to occupy the upper half-plane with the plate on the x-axis. 

au azu 
at ay2 
--v- = 0 (y,t > O ) ,  

U(Y,O) = 0, 

u(m,t) < 00, 

u(0, t )  = u,sin (wt ) .  

Capital letters will denote nondimensional variables which are defined by 

U = u/tco, T = wt, Y = y(w/v)$. 

The problem now reads 

- 0  ( Y , T >  0 ) ,  
au a2u - 
aT ay2 

U(Y ,O)  = 0, 

U(m,T) < 00, 

U(0 ,  T) = sin (T). 

The velocity may be decomposed into a steady state and a transient component 
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Both components satisfy the same form of differential equation, (2). The steady- 
state component is given in any of the references cited above. 

Us = exp ( -  Y /  j 2 )  sin (T- Y /  J2). (7 )  

This solution satisfies boundary conditions (3) and (4) but not the initial condi- 
tion ( 2 ) .  If the transient solution satisfies the boundary conditions 

lJt( Y ,  0) = -exp ( - Y/$)  sin ( - YIJZ), (8) 

Ut(00,T) < 00, (9) 

Ut(0,T)  = 0, (10) 

then the composition of the transient and steady-state solutions will completely 
satisfy equations (2) to (5). 

The general transient problem can be solved by integrating the following 
expression, given by Carslaw & Jaeger, 

The function f(5) is the initial profile, in our case equation (8). Substitution of 
(8) into (11) does not lend to a tractable integral, as the experience of other 
authors points out. Instead of (8), an equivalent expression using the notation 
of complex variables will be used, 

UI(Y,O) = Imexp[-(1-i)Y/J2]. (12) 

Substitution of (12) into (11) gives integrals which can be evaluated by standard 
techniques. The result for the transient velocity component is 

Uk( Y, T) = Im { - $ exp (C Y /  4 2  - iT) erfc [( $T)* (C + Y/(T,/2))] 

+ 4 exp ( - C Y /  4 2  - iT) erfc [(+T)* (C - Y/(TJ2))]). (13) 

In this equation, C is the complex constant C = 1 - i. It is noted that each term 
in (13) satisfies the differential equation separately. 

We can now understand the difficulties associated with previous attempts to 
integrate equation (1). To obtain the answer in real variables, equation (13) 
should be separated into its real and imaginary parts. This could be done if there 
were an expression for the error function, 

erf (x + iy) = P(x,  y) + iG(x, y), (14) 

where P and G contain elementary functions. Salzer (1951) (see also Abramowitz 
& Stegun 1964, p. 297) gives an infinite series of the form (14) which approximates 
the error function but it appears that no exact relation exists. 

Equation (13) also contains the answer to a related problem. It can be verified 
that the real part of (13) is the answer to the transient problem with the plate 
oscillating as - cos T instead of sin T in ( 5 ) .  

As it stands now the answer (13) contains the error function of a complex 
argument. The tables given in Abrnmowitz & Stegun (1964) do not give erf (2) 
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Transient velocity, Ut 

FIGURE 1. Transient velocity distribution, plate velocity sin (P). 
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FIGURE 2. Transient velocity distribution, plate velocity - cos (T). 
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directly but an auxiliary function. The auxiliary function is used to give a 
smoother function which allows accurate interpolation. The function is defined as 

(15)  w(z) = exp ( - 9) erfc ( - iz). 

In  terms of (15)  the answer has a compact form and may be found directly in the 
tables 

Ut = 9 exp [ - Y 2 / ( 4 T ) ] .  [w(zJ - w(z,)],  (16)  

where x1 = (iT)*+i[(+T)*- Y / ( 2 J T ) ] ,  

z2 = ($T)j+i[(frT)*+ Y / ( 2 J T ) ] .  

The imaginary part of (16) applies when the plate motion is sin ( T )  and the real 
part for - cos (T) .  Graphs of equation (16)  are given in figures 1 and 2. 

3. Characteristics of the solution 
It is easy to see that the transient dies out rapidly because of the exponential 

in equation (1) .  By plotting the transient solution we can get an idea of just how 
rapidly this happens. The transient component of the velocity for the case when 
the wall velocity varies as sin ( T )  is given in figure 1. The maximum velocity on 
figure 1 is slightly greater than 0.3 and occurs near Y = 1. The curves decay 
rapidly and the maximum point moves further into the fluid. At a time T = 5,  
slightly less than a full cycle, the maximum velocity has been reduced to less 
than 0.05. 

Figure 2 displays the transient velocity for the second case; that is, when the 
plate oscillates as - cos (T) .  This problem has a discontinuity in the boundary 
conditions at  the plate. Initially the plate velocity is one, but jumps to zero for 
T > 0. The scales on figures 1 and 2 are different, since the maximum velocity is 
now one. Again the position of the maximum moves into the fluid as time 
progresses. Although the initial velocity is much higher in this case the decay 
occurs more rapidly; all velocities are less than 0.05 at a time T = 2. The time 
for this to occur in the f i s t  case was T = 5. 

The complete starting problem velocity profiles are shown in the next two 
figures. Velocity profiles are given in figure 3 for the case where the fluid is 
initially still and the plate is moved so that the velocity varies as sin (T) .  For 
comparison the steady-state solutions are plotted as dashed lines. The first curve 
at  T = 0.3 shows the viscous ‘wave ’ has penetrated only slightly into the fluid. 
The corresponding steady-state velocity profile shows that most of the fluid has 
a negative velocity, the result of the steady-state plate velocity just completing 
its negative half cycle. The next curve at T = 1.5 shows a deeper penetration 
and a decay in the difference between the starting and the steady-state solutions. 
This difference, which is the transient solution, is seen from figure 1 to be a 
maximum of 0.12 at Y = 2. The plate velocity reverses and becomes negative for 
T = 3.5. A maximum now occurs in the interior of the fluid and propagates 
inward. Near the bottom of the oscillation, T = 5, the transient and steady-state 
curves are almost the same; as noted previously, the difference has decayed to 
less than 0.05. 
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The starting phase for a fluid with a plate velocity - cos (T) is plotted on 
figure 4. Again the dashed lines give the corresponding steady-state distribution. 
The plate velocity which is initially zero jumps to - 1 and the fluid begins to 
respond. The plate velocity begins to rise and the difference between the starting 
and steady state rapidly decreases until they are essentially the same at T = 2.5. 

FIGURE 3. Starting phase velocity profiles, plate velocity sin(T). 

" 
- 1.0 -0.5 0 0 5  1 .o 

Velocity, U 

FIGURE 4. Starting phase velocity profiles, plate velocity - cos (T). 
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In  general, the transient effect will be negligible in less than one-half cycle for 
the cos ( T )  surface temperature. The sin ( T )  temperature oscillation requires a 
little longer for the transient to decay but it still becomes negligible in less than 
a full cycle. 

4. Summary 
A closed form solution to the transient component of Stokes’s problem was 

presented. The real part of the complex result corresponds to a plate oscillation 
of - cos (T) while the imaginary part is associated with sin (T). The error function 
of a complex variable appears in the answer and does not allow the solution to 
be split into real and imaginary parts consisting of elementary functions. 
Nevertheless, numerical values can be easily calculated, since the complex error 
function, or its equivalent, is given in newer mathematical tables. 
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